Pure Mathematics P4 Mark scheme

Quest	tion Scheme	Marks
1	$\left\{\frac{1}{\left(2+5x\right)^3} =\right\} (2+5x)^{-3}$	M1
	$= \underline{(2)^{-3}} \left(1 + \frac{5x}{2} \right)^{-3} = \frac{1}{\underline{8}} \left(1 + \frac{5x}{2} \right)^{-3}$	B1
	$=\left\{\frac{1}{8}\right\}\left[1+(-3)(kx)+\frac{(-3)(-4)}{2!}(kx)^{2}+\frac{(-3)(-4)(-5)}{3!}(kx)^{3}+\dots\right]$	M1 A1
	$= \left\{\frac{1}{8}\right\} \left[1 + (-3)\left(\frac{5x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-5)}{3!}\left(\frac{5x}{2}\right)^3 + \dots\right]$	
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$	
	$= \frac{1}{8} [1 - 7.5x + 37.5x^2 - 156.25 x^3 + \dots]$	
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$	A1 A1
	or $\frac{1}{8} - \frac{15}{16}x; + 4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 + \dots$	
		(6)
Notes:	1	
M1:	Mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$.	
<u>B1</u> :	$\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$ outside brackets or $\frac{1}{\underline{8}}$ as candidate's constant term in their binomial expansion	ion.
M1:	Expands $(+kx)^{-3}$, $k = a$ value $\neq 1$ to give any 2 terms out of 4 terms simplified or u	ın-
	simplified, Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or	
	$1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.	
A1:	A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^2$	3
	expansion with consistent (kx) . Note that (kx) must be consistent and $k = a$ value \neq the RHS, not necessarily the LHS) in a candidate's expansion.	1. (on
A1:	For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$.	
A1:	Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$	

167

	Scheme	Marks
2(a)	$x^3 + 2xy - x - y^3 - 20 = 0$	
	$\left\{ \begin{array}{c} \underbrace{\cancel{x}} \\ \underbrace{x} \\ \underbrace{\cancel{x}} \\ \underbrace{\cancel{x}} \\ \underbrace{\cancel{x}} \\ \underbrace{\cancel{x}} \\ \underbrace{x} \\ \underbrace{x}$	M1 <u>A1</u> <u>B1</u>
	$3x^{2} + 2y - 1 + (2x - 3y^{2})\frac{dy}{dx} = 0$	dM1
	$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2} \text{cso}$	A1
		(5)
(b)	At P(3, -2), m(T) = $\frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}; = \frac{22}{6}$ or $\frac{11}{3}$ and either T: $y - 2 = \frac{11}{3}(x - 3)$ or $(-2) = (\frac{11}{3})(3) + c \Rightarrow c =,$	M1
	T : $11x - 3y - 39 = 0$ or $K(11x - 3y - 39) = 0$ cso	Al
		(2)
		(7 marks)
Notes:		
M1: Dif	ferentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \rightarrow \pm kx^2\frac{dx}{dy}$ or $-x \rightarrow -\frac{dx}{dy}$	
(Igr A1: x ³ -	here $\left(\frac{dx}{dy}\right)$. $\Rightarrow 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \Rightarrow -\frac{dx}{dy} - 3y^2 = 0$	
(Igr A1: x ³ -	$\operatorname{hore}\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right).$	
(Igr A1: x ³ - B1: 2xy dM1: Dep	hore $\left(\frac{dx}{dy}=\right)$). $\Rightarrow 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \Rightarrow -\frac{dx}{dy} - 3y^2 = 0$ $y \Rightarrow 2y \frac{dx}{dy} + 2x$ bendent on the first method mark being awarded. An attempt to factorise ou	t all the
(Igr A1: x ³ - B1: 2xy dM1: Dep	hore $\left(\frac{dx}{dy}=\right)$). $\Rightarrow 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \Rightarrow -\frac{dx}{dy} - 3y^2 = 0$ $y \Rightarrow 2y \frac{dx}{dy} + 2x$ bendent on the first method mark being awarded. An attempt to factorise ou	t all the
(Igr A1: x ³ - B1: 2xy dM1: Dep ter	$\operatorname{hore}\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right) = 0$ $\Rightarrow 3x^{2} \frac{\mathrm{d}x}{\mathrm{d}y} \text{and} -x - y^{3} - 20 = 0 \Rightarrow -\frac{\mathrm{d}x}{\mathrm{d}y} - 3y^{2} = 0$ $y \rightarrow 2y \frac{\mathrm{d}x}{\mathrm{d}y} + 2x$	t all the
(Igr A1: x ³ - B1: 2xy dM1: Dep tern A1: For	dy dy dy $dy dy$ dy dy dy dy dy dy dy	t all the
(Igr A1: x ³ - B1: 2xy dM1: Dep tern A1: For (b)	$dy \qquad dy \qquad dy$ $dy \qquad dy$ dy dy dy dy dy dy dy	
(Igr A1: x ³ - B1: 2xy dM1: Dep tern A1: For (b) M1: Sor	dy dy dy $dy dy$ dy dy dy dy dy dy dy	
(Igr A1: x ³ - B1: 2xy dM1: Dep tern A1: For (b) M1: Sor y to	dy dy $dy dy$ dy dy dy dy dy dy dy	
(Igr A1: x ³ - B1: 2xy dM1: Dep tern A1: For (b) M1: Sor y to •	$dy \qquad dy \qquad$	

PMT

Question	Scheme	Marks
3 (a)	$1 = A(3x - 1)^2 + Bx(3x - 1) + Cx$	B1
	$x \rightarrow 0 (1 = A)$	M1
	$x \rightarrow \frac{1}{3}$ $1 = \frac{1}{3}C \implies C = 3$ any two constants correct coefficients of x^2	A1
	$0 = 9A + 3B \implies B = -3$ all three constants correct	A1
		(4)
(b)(i)	$\int \left(\frac{1}{x} - \frac{3}{3x - 1} + \frac{3}{(3x - 1)^2}\right) dx$	
	$= \ln x - \frac{3}{3} \ln (3x - 1) + \frac{3}{(-1)^3} (3x - 1)^{-1} (+C)$	M1 A1ft A1ft
	$\left(= \ln x - \ln (3x - 1) - \frac{1}{3x - 1} (+C) \right)$	
		(3)
(b)(ii)	$\int_{1}^{2} f(x) dx = \left[\ln x - \ln (3x - 1) - \frac{1}{3x - 1} \right]_{1}^{2}$	
	$= \left(\ln 2 - \ln 5 - \frac{1}{5} \right) - \left(\ln 1 - \ln 2 - \frac{1}{2} \right)$	M1
	$=\ln\frac{2\times 2}{5}+\dots$	M1
	$=\frac{3}{10}+\ln\left(\frac{4}{5}\right)$	A1
		(3)
	·	(10 marks)

Notes:

(a)

B1: Obtaining $1 = A(3x-1)^2 + Bx(3x-1) + Cx$ at any stage. This will usually be at the beginning of the solution but, if the cover-up rule is used, it could appear later.

- M1: A complete method of finding any one of the three constants. If either A = 1 or C = 3 is given without working or, at least, without incorrect working, allow this M1 use of the cover-up rule is acceptable. In principle, an alternative method is equating coefficients (or substituting three values other than 0 and $\frac{1}{3}$), obtaining a sufficient set of equations and solving for any one of the three constants.
- A1: Any two of A, B and C correct. These will usually, but not always, be A and C.
- A1: All three of *A*, *B* and *C* correct. If all three constants are correct and the answers do not clearly conflict with any working, allow all 4 marks (including the B1) bod. There are a number of possible ways of finding *B* but, as long as the M has been gained, you need not consider the method used.

PMT

Question 3 notes *continued*

(b)(ii)

- M1: Dependent upon the M mark in (b). Substituting in the correct limits and subtracting, not necessarily the right way round. There must be evidence that both 1 and 2 have been used but errors in substitution do not lose the mark.
- M1: Dependent upon both previous Ms. Applies the addition and/or subtraction rules of logs to obtain a single logarithm. Either the addition or the subtraction rule of logs must be used correctly at least once to gain this mark and this must be seen in the attempt at (b)(ii).
- A1: The correct answer in the form specified. Accept equivalent fractions including exact decimals for *a* and or *b*.

Accept $\ln \frac{4}{5} + \frac{3}{10}$.

 $\frac{3}{10} - \ln \frac{5}{4}$ is not acceptable.

Question	Scheme	Marks		
4(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2\sqrt{3}\cos 2t$	B1		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = -8\cos t\sin t$	M1 A1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-8\cos t\sin t}{2\sqrt{3}\cos 2t}$	M1		
	$= -\frac{4\sin 2t}{2\sqrt{3}\cos 2t}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{3}\sqrt{3}\tan 2t \qquad \left(k = -\frac{2}{3}\right)$	A1		
		(5)		
(b)	When $t = \frac{\pi}{3}$ $x = \frac{3}{2}$, $y = 1$ can be implied	B1		
	$m = -\frac{2}{3}\sqrt{3}\tan\left(\frac{2\pi}{3}\right) (=2)$	M1		
	$y - 1 = 2\left(x - \frac{3}{2}\right)$	dM1		
	y = 2x - 2	A1		
		(4)		
		(9 marks)		
Notes:				
(a) B1: The	correct $\frac{\mathrm{d}x}{\mathrm{d}t}$			
M1: $\frac{\mathrm{d}y}{\mathrm{d}t}$	$\frac{dy}{dt} = \pm k \cos t \sin t \text{ or } \pm k \sin 2t \text{, where } k \text{ is a non-zero constant. Allow } k = 1$			
A1: $\frac{\mathrm{d}y}{\mathrm{d}t}$	$=-8\cos t \sin t$ or $-4\sin 2t$ or equivalent. In this question, it is possible to get a	a correct		
answer after incorrect working, e.g. $2\cos 2t - 2 \rightarrow -4\sin 2t$. This should lose this the next A but ignore in part (b).				
M1: The	ir $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$, or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$. The answer models are the transferred to the t	ust be a		
fune	ction of <i>t</i> only.			

Question 4 notes continued

A1:	The correct answer in the form specified. They don't have to explicitly state $k = -\frac{2}{3}$ but
	there must be evidence that the constant is $-\frac{2}{3}$. Accept equivalent fractions.
(b)	
B1:	That when $t = \frac{\pi}{3}$, $x = \frac{3}{2}$ and $y = 1$. Exact numerical values are required but the values can
	be implied, for example by a correct final answer, and can occur anywhere in the question.
M1:	Substituting $t = \frac{\pi}{3}$ into their $\frac{dy}{dx}$. Trigonometric terms, e.g. $\tan \frac{2\pi}{3}$ need not be evaluated.
dM1:	Dependent on the previous M. Finding an equation of a tangent with their point and their numerical value of the gradient of the tangent, not the normal. Expressions like $\tan \frac{2\pi}{3}$
	must be evaluated. The equation must be linear. Using $y - y' = m(x - x')$. They should get
	x' and y' the right way round. Alternatively writing $y = (\text{their } m)x + c$ and using
	their point, the right way round, to find <i>c</i> .
A1:	cao. The correct answer in the form specified.

Question	Scheme		Mark
5(a)	$y = 4x - x e^{\frac{1}{2}x}, x \ge 0$		
	$\left\{ y = 0 \implies 4x - x e^{\frac{1}{2}x} \right\}$	$\overline{e} = 0 \Longrightarrow x(4 - e^{\frac{1}{2}x}) = 0 \implies$	
	$e^{\frac{1}{2}x} = 4 \implies x_A = 4\ln 2$	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$	M1
		4ln2 cao (Ignore $x=0$)	A1
		1	(2)
(b)	$\left\{\int x e^{\frac{1}{2}x} dx\right\} = 2x e^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$	$\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{ dx \}, \alpha > 0, \beta > 0$	M1
	$\int J^{x} c^{-ux} \int -2x c^{-ux} \int 2c^{-ux} dx$	$2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}, \text{ with or without } dx$	A1
	=	$2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \{+c\}$	A1
			(3)
(c)	{∫ 4.	$\left\{x \mathrm{d}x\right\} = 2x^2$	B1
	$\left\{\int_{0}^{4\ln 2} (4x - x e^{\frac{1}{2}x}) dx\right\} = \left[2x^{2} - \left(2x^{2} $	$xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \bigg) \bigg]_{0}^{4\ln 2 \text{ or } \ln 16 \text{ or their limits}}$	
	$= \left(2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)}\right)$	$\left(2(0)^2 - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}\right)$	M1
	$= (32(\ln 2)^2 - 32(\ln 2) + 16) - (4)$		A1
	$= 32(\ln 2)^2 - 32(\ln 2) + 12$		
			(8 mark
	mpts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ i 2 cao stated in part (a) only (Ignore x)	In terms of $\pm \lambda \ln \mu$ where $\mu > 0$	1

(must be in this form) with or without dx

173

Question 5 notes continued $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with or without dx. Can be un-simplified. A1: $2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or without + c. Can be un-simplified. A1: (c) $4x \rightarrow 2x^2$ or $\frac{4x^2}{2}$ oe **B1: Complete** method of applying limits of their x_A and 0 to all terms of an expression of the M1: form $\pm Ax^2 \pm Bxe^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$. (Where $A \Box 0, B \Box 0$ and $C \Box 0$) and subtracting the correct way round. A correct three term exact quadratic expression in ln 2. For example allow for A1 A1: $32(\ln 2)^2 - 32(\ln 2) + 12$ $8(2\ln 2)^2 - 8(4\ln 2) + 12$ $2(4\ln 2)^2 - 32(\ln 2) + 12$ $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$ Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e. Also allow $32\ln 2(\ln 2 - 1) + 12$ or $32\ln 2\left(\ln 2 - 1 + \frac{12}{32\ln 2}\right)$ for A1. Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.

Question	Scheme			Marks
6	Assumption: there exists positive real numbers <i>a</i> , <i>b</i> such that			
		$a + b < 2\sqrt{ab}$		B1
	Method 1	Method 2		
	$a+b-2\sqrt{ab} < 0$	$(a+b)^2 = (2\sqrt{ab})^2$	A complete method for	
	$(\sqrt{a}-\sqrt{b})^2 < 0$	$a^2 + 2ab + b^2 < 4ab$	creating	M1A1
		$a^2 - 2ab + b^2 < 0$	$(f(a,b))^2 < 0$	
		$(a-b)^2 < 0$		
	This is a contradiction, therefore			
	If <i>a</i> , <i>b</i> are positive real numbers, then $a + b \ge 2\sqrt{ab}$		A1	
				(4)
	·			(4 marks
lotes:				

Accept, as a minimum, there exists *a* and *b* such that $a+b<2\sqrt{ab}$

M1: For starting with $a+b<2\sqrt{ab}$ and proceeding to either $(\sqrt{a}-\sqrt{b})^2 < 0$ or $(a-b)^2 < 0$

A1: All algebra is required to be correct. Do not accept, for instance, $(a + b)^2 = 2\sqrt{ab}^2$ even when followed by correct lines.

A1: A fully correct proof by contradiction. It must include a statement that $(a-b)^2 < 0$ is a contradiction so if a, b are positive real numbers, then $a + b \ge 2\sqrt{ab}$

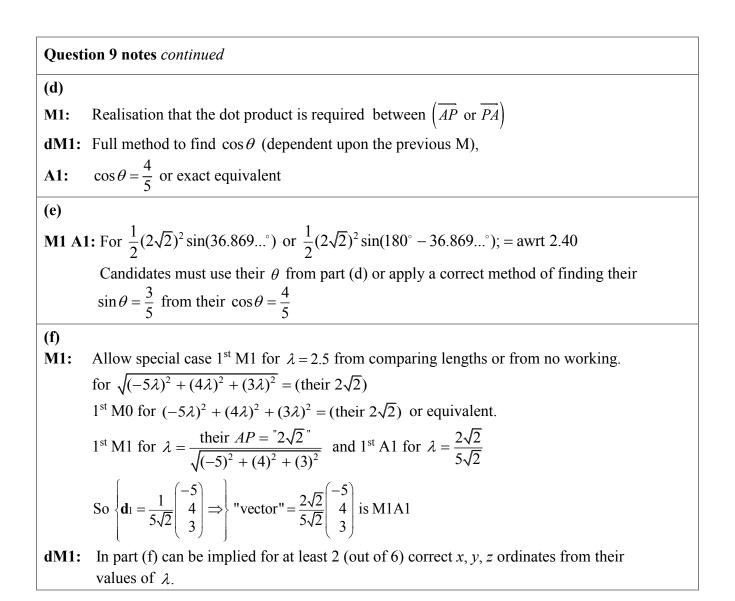
175

Question	Scheme		Marks
7(a)	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$		
	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right)$		M1
		Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
			-
	$=2\sqrt{3}\cos t$ * cso		A1*
			(3)
(b) $\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \frac{y}{2}$ achieve a containing only $\frac{1}{2}$			M1
	$\implies \frac{(x+y)^2}{12} + \frac{y^2}{4} =$	= 1	
	$\Rightarrow (x+y)^2 + 3y^2 = 12$	$\Rightarrow (x+y)^2 + 3y^2 = 12$	A1
		${a=3, b=12}$	(2)
	Alternative		
	$(x + y)^{2} = 12\cos^{2} t = 12(1 - \sin^{2} t) = 12 - 12\sin^{2} t$		
	$(x+y)^2 = 12 - 3y^2$	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.	M1
	$\Rightarrow (x+y)^2 + 3y^2 = 12$	$(x+y)^2 + 3y^2 = 12$	A1
			(2)
	I	(5 marks)
Notes:			
(a)			
M1: $\cos(t)$	$\left(\frac{\pi}{6}\right) \rightarrow \cos t \cos \left(\frac{\pi}{6}\right) \pm \sin t \sin \left(\frac{\pi}{6}\right) \text{ or } \cos \left(t + \frac{\pi}{6}\right)$	$\bigg) \rightarrow \bigg(\frac{\sqrt{3}}{2}\bigg)\cos t \pm \bigg(\frac{1}{2}\bigg)\sin t$	
dM1: Adds	their expanded x (which is in terms of t) to $2\sin t$	، •	
A1*: Evide	ence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the provided for $\sin\left(\frac{\pi}{6}\right)$ evaluated and $\sin\left(\frac{\pi}{6}\right)$	roof is correct with no errors.	
	ies $\cos^2 t + \sin^2 t = 1$ to achieve an equation contang $(x + y)^2 + 3y^2 = 12$	ining only <i>x</i> 's and <i>y</i> 's.	

Question		Scheme	Marks
8(a)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \lambda(120 - \theta), \theta \leqslant 100$		
	$\int \frac{1}{120 - \theta} \mathrm{d}\theta = \int \lambda \mathrm{d}t$		B1
	$-\ln(120-\theta); = \lambda t + c$	For integrating lhs M1 A1 For integrating rhs M1 A1	M1A1; M1A1
	$\{t = 0, \theta = 20 \implies\} -\ln(100) = \lambda(0)$)+c	
	$\Rightarrow -\ln(120 - \theta) = \lambda$	$\lambda t - \ln 100$	
	$\Rightarrow -\lambda t = \ln (120 - \lambda t)$	$(\theta) - \ln 100$	M1
	$\Rightarrow -\lambda t = \ln\left(\frac{120 - \theta}{100}\right)$		
	$e^{-\lambda t} = \frac{120 - \theta}{100}$		dddM1
	$100 e^{-\lambda t} = 120 - \theta$		
	leading to $\theta = 120 - 100e^{-\lambda t}$		A1*
			(8)
(b)	$\{\lambda = 0.01, \theta = 100 \Rightarrow\}$	$100 = 120 - 100 \ \mathrm{e}^{-0.01t}$	M1
	$\Rightarrow 100 e^{-0.01t} = 120 - 100 \Rightarrow$ $-0.01t = \ln\left(\frac{120 - 100}{100}\right)$ $t = \frac{1}{-0.01} \ln\left(\frac{120 - 100}{100}\right)$ $\left\{t = \frac{1}{-0.01} \ln\left(\frac{1}{5}\right) = 100 \ln 5\right\}$	Uses correct order of operations by moving from $100 = 120 - 100e^{-0.01t}$ to give $t =$ and $t = A \ln B$, where B > 0	dM1
		(s) (nearest second) awrt 161	A1
	100.91579101		(3)
			(11 marks)
Notes:			

- B1M1A1M1A1: Mark as in the scheme.
- M1: Substitutes t = 0 AND $\theta = 20$ in an integrated equation leading to

$$\pm \lambda t = \ln(f(\theta))$$


- **dddM1:** Uses a fully correct method to eliminate their logarithms and writes down an equation containing their evaluated constant of integration.
- A1*: Correct answer with no errors. This is a given answer

(b)

- **M1:** Substitutes $\lambda = 0.01$, $\theta = 100$ into given equation
- M1: See scheme
- A1: Awrt 161 seconds.

Question	Scheme			
9 (a)	<i>A</i> (3, 5, 0)	B1		
		(1)		
(b)	$\{l_2:\} \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ a + $\lambda \mathbf{d}$ or $\mathbf{a} + \mu \mathbf{d}$, $\mathbf{a} + t\mathbf{d} \mathbf{a} \neq 0$, $\mathbf{d} \neq 0$ with either $\mathbf{a} = \mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ or $\mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$, or a multiple of $-5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$	M1		
	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l_2 =$	A1		
		(2)		
(c)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} - \begin{pmatrix} 3\\5\\0 \end{pmatrix} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}$			
	$AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$ Full method for finding AP	M1		
	$2\sqrt{2}$	A1		
		(2)		
(d)	So $\overrightarrow{AP} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}$ and $\mathbf{d}_2 = \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \begin{pmatrix} -2\\0\\2 \end{pmatrix} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ Realisation that the dot product is required between $\left(\overrightarrow{AP} \text{ or } \overrightarrow{PA}\right)$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	M1		
	$\{\cos \theta = \} \frac{\overrightarrow{AP} \cdot \mathbf{d}_2}{ \overrightarrow{AP} \mathbf{d}_2 } = \frac{\pm \left(\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}}$	dM1		
	$\left\{\cos\theta\right\} = \frac{\pm (10+0+6)}{\sqrt{8}\sqrt{50}} = \frac{4}{5}$	A1 cso		
		(3)		
(e)	{Area $APE =$ } $\frac{1}{2}$ (their $2\sqrt{2}$) ² sin θ	M1		
	= 2.4	Al		
		(2)		

Question	Scheme		Marks	
9(f)	$\overrightarrow{PE} = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k}$ and $PE = \text{their } 2\sqrt{2} \text{ fm}$	rom part (c)		
	${PE^2 = \{ (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2 \}}$	This mark can be implied.	M1	
	$\left\{ \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \right\} \lambda = \pm \frac{2}{5}$	Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$	A1	
	$l_2: \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$	dependent on the previous M markSubstitutes at least one of their values of λ into l_2 .	dM1	
	$\left\{\overline{OE}\right\} = \begin{pmatrix} 3\\ \frac{17}{5}\\ \frac{4}{5} \end{bmatrix} \text{ or } \begin{pmatrix} 3\\ 3.4\\ 0.8 \end{pmatrix}, \ \left\{\overline{OE}\right\} = \begin{pmatrix} -1\\ \frac{33}{5}\\ \frac{16}{5} \end{bmatrix} \text{ or } \begin{pmatrix} -1\\ 6.6\\ 3.2 \end{pmatrix}$	At least one set of coordinates are correct.	A1	
	$\left(\frac{4}{5}\right) (0.8) \qquad \left(\frac{16}{5}\right) (3.2)$	Both sets of coordinates are correct.	A1	
			(5)	
		(15	5 marks)	
Notes:				
(a)		_		
B1: A	: Allow $A(3, 5, 0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{pmatrix} 3\\5\\0 \end{pmatrix}$ or benefit of the doubt $5\\0 \end{pmatrix}$			
(b) A1: Co	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 = \mathbf{or} \ \text{Line } 2 =$			
i.e	i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, where \mathbf{d} is a multiple of $\begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$.			
N	ote: Allow the use of parameters μ or <i>t</i> instead of λ			
(c) M1: Fi	nds the difference between \overrightarrow{OP} and their \overrightarrow{OA} and app	lies Pythagoras to the result t	to find	
	ote: Allow M1A1 for $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (2)^2}$	$\overline{(0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$.		

